K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

Mik ko biết 

a) Xét (O) có 

ΔABC nội tiếp đường tròn(A,B,C∈(O))

BC là đường kính của (O)(gt)

Do đó: ΔABC vuông tại A(Định lí)

Ta có: BC=BH+HC(H nằm giữa B và C)

mà BH=9cm(gt)

và CH=16cm(gt)

nên BC=9+16=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=9\cdot25=225\)

hay AB=15(cm)

Vậy: Khi BH=9cm và CH=16cm thì AB=15cm

b) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{MFA}=90^0\)(MF⊥AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒MF=AE(Hai cạnh đối trong hình chữ nhật AEMF)

Ta có: EM⊥AB(gt)

AC⊥AB(gt)

Do đó: EM//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

E∈AB(gt)

M∈BC(gt)

EM//AC(cmt)

Do đó: \(\dfrac{BE}{AE}=\dfrac{BM}{MC}\)(Định lí Ta lét)

\(\dfrac{BE}{MF}=\dfrac{BM}{MC}\)

hay \(BE\cdot MC=BM\cdot MF\)(đpcm)

Gọi G là trung điểm của AM

Ta có: ΔAHM vuông tại M(AH⊥HM)

mà HG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)

nên \(HG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AG=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)

nên HG=AG=GM(1)

Ta có: ΔAEM vuông tại E(ME⊥AB tại E)

mà EG là đường trung tuyến ứng với cạnh huyền AM(G là trung điểm của AM)

nên \(EG=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(GA=GM=\dfrac{AM}{2}\)(G là trung điểm của AM)

nên EG=GA=GM(2)

Từ (1) và (2) suy ra GM=GA=GE=GH

hay A,E,H,M cùng thuộc một đường tròn(đpcm)

18 tháng 4 2020

Hình bạn tự vẽ nha!!

a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\) 

              \(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)

Xét tứ giác \(AEHB\)có:

            \(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)

Mà 2 góc này cùng nhìn \(AB\)

\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)

\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.

b.)Có tứ giác \(AEHB\)nội tiếp

\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)

\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)

Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))

\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)

Mà 2 góc này ở vị trí SLT

\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD