K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

mong mn giúp mik ạ

 

18 tháng 12 2022

a: Xét tứ giác AHMK có

AH//MK

AK//MH

góc KAH=90 độ

Do đó: AHMK là hình chữ nhật

b: Xét tứ giác CKBF có

M là trung điểm chung của CB và FK

nên CKBF là hình bình hành

=>FC//BK

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

28 tháng 1 2020

1)Vì \(\Delta ABC\)vuông tại A (gt) => \(\widehat{BAC=90^0}hay\widehat{HÂ}K=90^0\)

Vì MH vông góc với AB tại H ( gt)

=>\(\widehat{MHA=90^0}\)

Vi MK vuông góc với AC tại K ( gt)

=> \(\widehat{MKA=90^0}\)

Xét tứ giác AMHK có : 

\(\widehat{MKA=90^0\left(cmt\right)}\)

\(\widehat{MHA=}90^0\left(cmt\right)\)

\(\widehat{HAK=90^0\left(cmt\right)}\)

=> AMHK là hình chữ nhật ( dấu hiệu nhận biết)(đpcm)

2)a. Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( \(\Delta\)ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)

b. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=\(\frac{1}{2}AB\)

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=\(\frac{1}{2}AB\)( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=\(\frac{1}{2}AB\)

BH= \(\frac{1}{2}AB\)

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

3)a.Có MK//AB(cmt)

D thuộc MK

=> MD//AB

Có : BC//Ax( gt)

M thuộc BC; D thuộc Ax

=> BM//AD

Xét tứ giác ABMD có : 

AB//MD(cmt)

BM//AD(cmt)

=> ABMD là hình bình hành (dấu hiệu nhận biết)

Xét tam giác ABC vuộng tại A có

M là trung điểm BC( gt)

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> AM=\(\frac{1}{2}BC\)(tính chất )

Có M là trung điểm BC

=> BM=\(\frac{1}{2}BC\)

Mà  AM=\(\frac{1}{2}BC\)

=> BM= AM

Vì ABMD là hình bình hành (cmt)

=> BM= AD(tính chất hình bình hành)

MÀ BM=AM

=> AD=AM(đpcm)

b.Xét tam giác AMD có 

AM=AD(cmt)

=> Tam giác AMD cân tại A 

Có AC vuông góc MK => AK vuông góc MD và AC vuông góc MD

Xét tam giác AMD cân tại A có :

AK vuông góc MD

=> AK là đường cao đồng thời là đường trung tuyến của tam giác AMD
Có AK là đường trung tuyến của tam giác AMD 

=> K là trung điểm MD

Xét tứ giác AMCD có

K là trung điểm AC ( cmt0

K là trung điểm MD(cmt)

=> AMCD là hình bình hành (dấu hiệu nhận biết)

Mà đường chéo AC vuông góc với đương chéo MD

=> AMCD là hình thoi ( dấu hiệu nhận biết)

tưởng gì 

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn) b)Có : MH vuông góc với AB ( gt )

              AC vuông góc với AB ( 
Δ
ABC vuông tại A)

=> MH//AC 

Xét tam giác ABc có

MH//AC( cmt)

M là trung điểm BC (gt)

=> H là trung điểm AB (định lý đường trung bình của tam giác)(đpcm)
. Có: MK vuông góc AC ( gt)

AB vuông góc AC( tam giác ABC vuông tại A )

=> MK//AB

Có:MK//AB(cmt)

M là trung điểm BC ( gt)

=> K là trung điểm AC ( định lý đường trung bình của tam giác )

Có : H là trung điểm AB ( cmt)

=. BH=1/2AB

Xét tam giác ABC có

M là trung điểm BC(cmt)

K là trung điểm AC ( cmt)

=> MK là đưởng trung bình của tam giác ABC( dấu hiệu nhận biết)

=> MK=1/2AB

( tính chất đường trung bình của tam giác)

=> MK//AB(tính chất đường trung bình của tam giác) hay MK//BH

Có MK=1/2AB

BH= 1/2AB

=> MK=BH

Mà MK//BH(cmt)

=> BMKH là hình bình hành

c)VÌ BMKH là hình bình hành (cmt)

=> Hai đường chéo HM và BK cắt nhau tại trung điểm mỗi đường 

Mà E là trung điểm HM ( gt)

=> E là trung điểm BK hay ba điểm B; E; K thẳng hàng(dpcm)

24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Xét ΔAEB có 

H là trung điểm của EB

M là trung điểm của AB

Do đó: HM là đường trung bình

=>HM//AE và HM=AE/2

hay HD//AE và HD=AE

hay ADHE là hình bình hành