K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

a) Xét tứ giác AEBN:

+ M là trung điểm của AB (gtt).

+ M là trung điểm của EN (N đối xứng E qua M).

=> Tứ giác AEBN là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).

=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Xét tam giác HEC và tam giác DEA:

+ EC = EA (E là trung điểm của AC).

\(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).

\(\widehat{HCE}=\widehat{DAE}\) (AD // HC).

=> Tam giác HEC = Tam giác DEA (c - g - c).

Xét tứ giác ADCH:

+ AD // HC (gt).

+ AD = HC (Tam giác HEC = Tam giác DEA).

=> Tứ giác ADCH là hình bình hành (dhnb).

Mà AD = CD (cmt).

=> Tứ giác ADCH là hình thoi (dhnb).

 

15 tháng 1 2022

chỗ mà AD = CD (cmt ) cm nằm ở đâu ấy ạ?

 

1 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay BMNC là hình thang

30 tháng 12 2020

Bn tự vẽ hình nha

a, Xét tứ giác ABCD có

MA=MC=1/2AC( m là trung điểm AC-gt)

MB=MD=1/2BD(B đối D qua M-gt)

Mà BD cắt AC tại M

-> ABCD là hình bình hành

31 tháng 12 2020

undefined 

a) Do B và D đối xứng qua M

\(\Rightarrow\) M là trung điểm BD

Tứ giác ABCD có:

M là trung điểm AC (gt)

M là trung điểm BD (cmt)

\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

b) Do ABCD là hình bình hành

\(\Rightarrow\) AB // CD và AB = CD

\(\Rightarrow\) AN // CD

Do B và N đối xứng nhau qua A

\(\Rightarrow AN=AB\)

Mà AB = CD (cmt)

\(\Rightarrow\) AN = CD

Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)

\(\Rightarrow AN\perp AC\)

\(\Rightarrow\widehat{CAN}=90^0\)

Tứ giác ACDN có:

AN // CD (cmt)

AN = CD (cmt)

\(\Rightarrow ACDN\) là hình bình hành

\(\widehat{CAN}=90^0\)

\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)

c) Gọi E là giao điểm của MN và BC

Do AK // MN (gt)

\(\Rightarrow AK\) // ME và AK // NE

\(\Delta BNE\)

AK // NE

A là trung điểm BN

\(\Rightarrow\) K là trung điểm BE

\(\Rightarrow KB=KE\)

\(\Delta AKC\) có:

AK // ME (cmt)

M là trung điểm AC

\(\Rightarrow\) E là trung điểm CK

\(\Rightarrow\) KC = 2 KE

Mà KB = KE (cmt)

\(\Rightarrow\) KC = 2 KB

22 tháng 10 2021

 

- Xét tam giác ADC có:

M là trung điểm AD (gt)

N là trung điểm AC (gt)

=> MN là đường trung bình tam giác ADC

=> MN // DC <=> MN // BI (vì B; D; I; C cùng nằm trên BC) 

=> Tứ giác BMNI là hình thang (1)

- Xét tam giác ADC có:

N là trung điểm AC (gt)

I là trung điểm DC (gt)

=> NI là đường TB tam giác ADC

=> NI // AD 

=> góc BIN = góc BDM

- Xét tam giác ABD vuông tại B có M là trung điểm AD (gt)

=> BM là trung tuyến

=> BM = 1/2 . AD (trung tuyến ứng vs cạnh huyền)

=> BM = AM = MD

=> Tam giác BMD cân tại M

=> góc MBD = góc BDM

=> góc MBD = góc BIN ( = góc BDM) (2)

Từ (1) và (2)

=> BMNI là hình thang cân

b,

- Có AD là phân giác góc A (gt)

=> góc BAD = góc DAC = 1/2 . góc A = 29o

Xét tam giác ABD vuông tại B

=> góc BAD + góc BDA = 90o

=> 29o + góc BDA = 90o

=> góc BDA = 61o

Có góc BDA = góc MBD (cmt)

=> góc MBD = 61o

Mà BMNI là hình thang cân (cmt)

=> góc MBD = góc NID = 61o

- Có MN // BI (cmt)

=> góc MBD + góc BMN = 180o ( trong cùng phía)

=> 61o + góc BMN = 180o

=> góc BMN = 119o

Mà BMNI là hình thang cân

=>  góc BMN = góc MNI = 119o

KL:.........

22 tháng 10 2021

cảm ơn bn nhé

11 tháng 9 2017

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )

b. D là điểm đối xứng với B qua M =>BM=MD

Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường 

=> ABCD là HBH

c. E đối xứng với A qua N => AN=NE

ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

16 tháng 12 2019

a) Xét tứ giác BDCN có :M là trung điểm BC

                                       M là trung điểm DN

\(\Rightarrow\)Giao điểm của hai đường chéo BC và DN là trung điểm M mỗi đường

\(\Rightarrow\)BDCN là hình bình hàng

b)Vì BDCN là hình bình hành

\(\Rightarrow\)BD//CN và BD=CN

mà N là trung điểm AC ( gt )

\(\Rightarrow\)BD // AN và BD =AN

\(\Rightarrow\)ABDN là hình bình hành

Có \(\widehat{A}\)=90 độ ( Vì tam giác ABC \(\perp\)tại A )

\(\Rightarrow\)ABDN là hình chữ nhật

\(\Rightarrow\)AD =BN ( tính chất hình chữ nhật)

16 tháng 12 2019

a. Ta có: D đối xứng với N qua M (gt)

      => NM = MD 

      => M là trung điểm của ND

  Xét tứ giác BDCN, ta có:

      M là trung điểm của ND (cmt)

      M là trung điểm của BC (gt)

      => BDCN là hình bình hành (dhnb)

    

16 tháng 12 2022

a: Xét ΔCAB có CD/CB=CE/CA

nên DE//AB và DE=AB/2

=>DF//AB và DF=AB

=>ABDF là hình bình hành

Xét tứ giác ABDE có DE//AB

nên ABDE là hình thang

b: Xét tứ giác ADCF có

E là trug điểm chung của AC và DF
góc ADC=90 độ

Do đo: ADCF là hình chữ nhật

c: Vì ABDF là hình bình hành

nên AD cắt BF tại trung điểm của mỗi đường

=>B,I,F thẳng hàng