K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

24 tháng 4 2022

CẢM ƠN

NHA LOVE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BD là phângíac

nên BD vuông góc CF

c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc EDC+góc FDC=180 độ

=>E,D,F thẳng hàng

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABD và ΔEBD có:
BA = BE (gt)
B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)

 

 BAD^=BED^ (hai góc tương ứng)
mà BAD^ =900
BED^ =900
 DE  BE

b) ΔABI và ΔEBI có:
BA = BE (gt)

5 tháng 7 2016

Hình bạn tự vẽ nhé!!thanghoa

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

b). Gọi I là giao điểm của BD và AE.

Xét tam giác ABI và tam giác EBI có:

          AB=EB (tam giác ABD=tam giác EBD)

          Góc ABI=góc EBI (đường phân giác BD)

          BI là cạnh chung.

=> tam giác ABI=tam giác EBI (c.g.c)

=> AI=EI => I là trung điểm của AE. (1)

=> Góc BIA=góc BIE

Mà góc BIA+góc BIE=180 độ (hai góc kề bù)

=> góc BIA=góc BIE=90 độ.

=> BI vuông góc với AE (2).

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE

d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:

                AD=ED (tam giác ABD = tam giác EBD)

                AF=CE (GT)

=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)

=> Góc ADF = góc EDC 

Chúc bạn học tốt!

 

19 tháng 4 2017

cn ý : E,D,F thẳng hàng

giúp mk vs

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

A B C D E F

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)