Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung
b,\(\Delta ABC\sim\Delta HBA\) theo a
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)
\(=4.\left(4+9\right)\)
\(\Rightarrow AB=2\sqrt{13}\) (cm)
Áp dụng định lí py-ta-go trong \(\Delta ABH\):
\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)
Vì \(AH=DE=6cm\)
c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung
\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)
Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)
-Chúc bạn học tốt-
a) Xét tam giác AHD và tam giác ABH có:
Góc A chung
\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)
\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)
b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Vậy thì \(\widehat{DHA}=\widehat{DEA}\)
Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)
Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)
c) Gọi I là giao điểm của AO và DE.
Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC hay \(\widehat{OAC}=\widehat{OCA}\)
Lại có \(\widehat{AED}=\widehat{ABC}\) nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)
Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)
d) Ta có do \(AO\perp DE\) nên:
\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)
Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.
Xét tam giác vuông ABC, ta có
\(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)
\(\Rightarrow AH\le a\)
Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
DO đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)