Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
b) Xét tam giác HAP có:
Q là trung điểm BH
P là trung điểm AH
=> QP là đường trung bình
=> QP // AB
=> \(\widehat{HQP}=\widehat{QPA}\)
Xét tam giác HQP và tam giác ABC có:
\(\widehat{HQP}=\widehat{QPA}\)
\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)
=> Tam giác HQP ~ Tam giác ABC ( g - g )
=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\) (1)
Xét tam giác HAB có:
QP // AB
=> Tam giác HQP ~ HAB
=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\) (2)
Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)
Xét tam giác AHC vuông ở H có:
\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)
Xét tam giác ABC vuông ở A có:
\(\widehat{CBA}+\widehat{BCA}=90^0\) (4)
Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)
Xét tam giác ABQ và tam giác CAP có:
\(\frac{AB}{AC}=\frac{QB}{PA}\)
\(\widehat{PAC}=\widehat{CBA}\)
=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )
Bài làm
a) Vì AM là trung tuyến
=> M là trung điểm BC
=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )
Ta có: BH + HM + MC = BC
=> BH + HM + MC = BH + HC
hay 9 + HM + 12,5 = 9 + 16
=> HM = 9 + 16 - 9 - 12,5
=> HM = 3,5 ( cm )
Vì tam giác ABC là tam giác vuông ở A
Mà AM trung tuyến
=> AM = MC = BM = 12,5 ( cm )
Xét tam giác AHM vuông ở H có:
Theo định lí Pytago có:
AH2 = AM2 - HM2
hay AH2 = 12,52 - 3,52
=> AH2 = 156,25 - 12,25
=> AH2 = 144
=> AH = 12 ( cm )
SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )
Xét tam giác AHB vuông ở H có:
Theo định lí Py-ta-go có:
AB2 = BH2 + AH2
=> AB2 = 92 + 212
=> AB2 = 81 + 441
=> AB2 = 522
=> AB \(\approx\)22,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
=> AC2 = AH2 + ( HM + MC )2
hay AC2 = 212 + ( 3,5 + 12,5 )2
=> AC2 = 441 + 256
=> AC2 = 697
=> AC \(\approx\)26,4 ( cm )
Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )
SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)