Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)
\(\Leftrightarrow HC=72\left(cm\right)\)
hay HB=50(cm)
Bài 1:
Áp dụng HTL trong tam giác vuông:
$AB^2=BH.BC$
$\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6$ (cm)
$CH=BC-BH=10-3,6=6,4$ (cm)
Tiếp tục áp dụng HTL:
$AH^2=BH.CH=3,6.6,4$
$\Rightarrow AH=4,8$ (cm)
$AC^2=CH.BC=6,4.10=64$
$\Rightarrow AC=8$ (cm)
Bài 2:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+1^2}=2$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{\sqrt{3}.1}{2}=\frac{\sqrt{3}}{2}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{3-\frac{3}{4}}=\frac{3}{2}$ (cm)
$CH=BC-BH=2-\frac{3}{2}=\frac{1}{2}$ (cm)
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; BC = 5cm
b, AB = 15cm; AC = 20cm; AH = 12cm; BC = 25cm
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm
b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm
c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm
Áp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :
AC2 = BC2 - AB2
AC2 =
Ta có :
Mà :
⇒
⇔ AH =
a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881
=> AB =
Lại có : BH.HC = AH2
<=> HC.25 = 162
<=> HC.25 = 256
<=> HC = 256 : 25 = 10,24
Ta có : BC = HC + BH = 10,24 + 25 = 35,24
Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576
=> AC =
a, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{BH\cdot CH}=\sqrt{5,76}=2,4\left(cm\right)\end{matrix}\right.\)
\(a,\)Áp dụng hệ thức lượng trong tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\Rightarrow BC^2=3^2+4^2\Rightarrow BC=\sqrt{9+16}\)
\(\Rightarrow BC=5cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}\Rightarrow BH=\frac{3^2}{5}=\frac{9}{5}cm\)
\(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}\Rightarrow CH=\frac{4^2}{5}=\frac{16}{5}cm\)
\(AH^2=\frac{9}{5}.\frac{16}{5}\Rightarrow AH^2=\frac{144}{25}\Rightarrow AH=\sqrt{\frac{144}{25}}=\frac{12}{5}cm\)
\(b,\)
\(BC=BH+CH\Rightarrow BC=9+16\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow AB^2=9.25\Rightarrow AB=\sqrt{225}=15cm\)
\(AC^2=CH.BC\Rightarrow AC^2=16.25\Rightarrow AC=\sqrt{400}=20cm\)
\(AH^2=BH.CH\Rightarrow AH^2=9.16\Rightarrow AH=\sqrt{144}=12cm\)