K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

26 tháng 1 2022

a, Xét tứ giác AEHF có : ^AEH = ^EAF = ^HFA = 900

Vậy tứ giác AEHF là hcn 

=> AH = EF ( 2 đường chéo bằng nhau ) 

c, Theo Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=3cm\)

SABC = 1/2 . AB . AC = 1/2 . 3 . 4 = 6 cm2

26 tháng 1 2022

a) Xét tứ giác AEHF:

\(\widehat{EAF}=90^o;\widehat{AEH}=90^o;\widehat{AFH}=90^o\)

(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).

=> AEHF là hình chữ nhật (dhnb).

=> AH = EF (Tính chất 2 đường chéo của hình chữ nhật).

b) Ta có: FK = AF (gt).

Mà AF = EH (AEHF là hình chữ nhật).

=> AF = EH = FK.

Ta có: EH // AF (AEHF là hình chữ nhật).

Mà F thuộc AK (gt).

=> EH // FK.

Xét tứ giác EHKF:

 EH // FK (cmt).

 EH = FK (cmt).

=> EHKF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

Ta có: BC2 = AB2 + AC2 (Định lý Pytago).

Thay số: 52 = AB2 + 42.

=> AB= 9. => AB = 3.

Diện tích tam giác ABC vuông tại A: 

\(\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right).\)

10 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

 

20 tháng 12 2021

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật