K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 3 2019
Chứng minh \(IJ^2=IM^2+JN^2\)
Ta xét tam giác MIA và HIA có:
IA chung
MA=HA (gt)
\(\widehat{MAI}=\widehat{HAI}\)( AI là phân giác góc BAH)
=> Tam giác MIA=HIA
=> MI=IH, \(\widehat{AMI}=\widehat{AHI}\)
Tương tự ta chứng minh đc tam giác AJH= AJN
=> \(JH=JN,\widehat{AHJ}=\widehat{ANJ}\)
Mà \(\widehat{AMI}+\widehat{ANJ}=90^o\)( tam giác AMN vuông)
=> \(\widehat{AHI}+\widehat{AHJ}=90^o\)
=> Tam giác IHJ vuông tại H
Áp dụng định lí Pitago ta có:
\(IJ^2=IH^2+JH^2=IM^2+JN^2\)
=> dpcm