K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 1 2022
ΔBAEΔBAE có:
BE=AB(gt)BE=AB(gt)
⇒ΔBAE⇒ΔBAE cân tại BB
⇒BAEˆ=BEAˆ⇒BAE^=BEA^(1)(1)
Ta có: BA⊥ACBA⊥AC ( ΔABCΔABC vuông tại AA )
EK⊥AC(gt)EK⊥AC(gt)
Nên: BABA // EKEK
⇒BAEˆ=AEKˆ(2)⇒BAE^=AEK^(2)
Từ (1) và (2) suy ra: BEAˆ=AEKˆBEA^=AEK^
Xét ΔAHEΔAHE và ΔAKEΔAKE có:
Hˆ=Kˆ(=90o)H^=K^(=90o)
BEAˆ=AEKˆ(cmt)BEA^=AEK^(cmt)
ACAC là cạnh huyền chung
⇒ΔAHE=ΔAKE⇒ΔAHE=ΔAKE ( cạnh huyền - góc nhọn )
⇒AH=AK
13 tháng 4 2023
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
a)Tam giác BAE có BE=BA (gt)
=> tam giác BAE cân tại B
=>góc BEA=góc BAE
Mà góc AEK=góc BAE
=>góc BEA=góc AEK
Vậy EA là pgiac của góc BEK
b) Tam giác AHE vuông tại H và tam giác AKE vuông tại K có:
AE là cạnh chung
góc HEA=góc KEA(cmt)
=>tam giác AHE-=tam giác AKE (c.huyền-g.nhọn)
=>AH=AK
a) Ta có EK \(\perp\)AC (gt)
Mà AB \(\perp\)AC (tam giác ABC vuông tại A)
=> EK // AB
Nên \(\widehat{BAE}\)=\(\widehat{AEK}\)(1)
Ta lại có AB = BE
=> Tam giác ABE cân tại B
Nên \(\widehat{BAE}\)= \(\widehat{AEB}\)(2)
Từ (1) và (2) => \(\widehat{AEB}\)= \(\widehat{AEK}\)
Hay EA là phân giác của góc BEK
b) Xét tam giác vuông AHE và tam giác vuông AKE có
AE: cạnh chung
\(\widehat{AEB}=\widehat{AEK}\)
=> Tam giác vuông AHE = tam giác vuông AKE (ch-gn)
=>AK = AH (đpcm)