Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
b: ΔHAC vuông tại H có HN vuông góc AC
nên HN^2=NA*NC
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH=6*8/10=4,8cm
b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
CB=√6^2+8^2=10(cm)
BH=6*8/10=4,8cm
b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=NA\cdot NC\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b:
Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:
\(AD\cdot AB=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)
hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét ΔAED vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: ΔAED\(\sim\)ΔABC
Bạn kham khảo link này nhé.
Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
góc B chung
Do đó: ΔBHA\(\sim\)ΔBAC
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
BH=AB2/BC=3,6(cm)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=AH\cdot CN\)