Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
Do đó: ΔADH\(\sim\)ΔAHB
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=HB\cdot HC\)
xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)
Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)
1 và 2 suy ra DI/DK=EI/EK
suy ra điều phải chứng minh thôi bạn
Hình tự vẽ
Xét tam giác HPB và HQC
góc B=C, HB=HC, BHP=CHQ
=> PB=QC
=>AP=AQ=> tam giác APQ vuông cân tại A
giúp mk câu b