K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

Gọi giao điểm của AM và DE là O

a) Dễ chứng minh ADME là hình chữ nhật => AM = DE

Để ADME là hình vuông thì AM là tia phân giác của ^BAC => M là chân đường phân giác kẻ từ A đến BC

b) Tam giác AHM vuông tại H => HO = AO = MO = DO = EO

Xét tam giác DHE có HO = DO = EO => tam giác DHE vuông tại H => đpcm

c) Ta sẽ chứng minh HK = MN

Theo Talet : \(\frac{HK}{BK}=\frac{AD}{BD}\Rightarrow HK=\frac{BK\cdot AD}{DB}=\frac{BK\cdot ME}{DB}\)

Theo hệ thức lượng tam giác MEC có: \(ME^2=MN.MC\Rightarrow MN=\frac{ME^2}{MC}\)

Ta cần chứng minh: \(\frac{ME^2}{MC}=\frac{BK\cdot ME}{BD}\)

\(\Leftrightarrow\frac{ME}{MC}=\frac{BK}{DB}\)

Lại có tam giác BKD đồng dạng tam giác MNE => \(\frac{BK}{BD}=\frac{MN}{ME}\)

\(\Rightarrow\frac{ME}{MC}=\frac{MN}{ME}\Leftrightarrow ME^2=MC\cdot MN\) ( luôn đúng theo hệ thức lượng )

Do đó ta có HK = MN

<=> HK + HM = MN + HM

<=> KM = HN ( đpcm )

c) đang nghĩ :)

15 tháng 2 2020

thôi ko nghĩ nữa đâu, a bận rồi =)) sorry mấy đứa

7 tháng 11 2019

a) ta có : tam giác ABC vuông tại A

=> BAC = 90 độ (1)

 có : MD vuông góc AB

=> MDA = 90 độ (2)

Ta có : ME vuông góc AC

=> MEA = 90 độ (3)

Từ (1)(2)(3) => ADME là hình chữ nhật

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0