Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)
\(=>HB=BC-HC=15-9,6=5,4cm\)
áp dụng Pytago trong \(\Delta AHC\) vuông tại H
\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)
\(b,\) do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H
theo hệ thức lượng
\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)
c, do E,F là hình chiếu vuông góc của H lần lượt lên AB, AC
=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)
áp dụng pytago trong \(\Delta EHA\) vuông tại E
\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)
theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH
\(=>AH^2=HB.HC\left(2\right)\)
(1)(2)=>\(HE^2+HF^2=HB.HC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(BD\cdot BA=BH^2\)
\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(CE\cdot CA=CH^2\)
\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)
\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm
b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1)
Áp dụng định lí Pytago cho tam giác AHC vuông tại H
\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2)
Từ (1) ; (2) suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )
a) ΔABH vuông tại H, theo định lý Py-ta-go ta có:
AH2+BH2=AB2 (1)
ΔABC vuông tại A, đường cao AH, theo hệ thức lượng ta có:
=> AB2=BH.BC (2)
Từ (1) và (2) => BH.BC=AH2+BH2 ( = AB2)
b) Xét ΔAHB vuông tại H, HE là đường cao
=> AH2=AE.AB (1)
Xét ΔAHC vuông tại H, HF là đường cao
=> AH2=AF.AC (2)
Từ (1) và (2) => AE.AB=AF.AC (AH2)