K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 7 2021

Áp dụng hệ thức lượng:

\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=4\left(cm\right)\)

\(BC=BH+CH=10\left(cm\right)\)

Hệ thức lượng:

\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{CH.BC}=4\sqrt[]{5}\) (cm)

\(sinB=\dfrac{AC}{BC}=\dfrac{2\sqrt{5}}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

\(tanB=\dfrac{AC}{AB}=2\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=2+8=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=2\cdot8=16\)

hay AH=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=2\cdot10=20\\AC^2=8\cdot10=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)

\(\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}=\dfrac{\sqrt{5}}{5}\)

\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{4\sqrt{5}}{2\sqrt{5}}=2\)

\(\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{2\sqrt{5}}{4\sqrt{5}}=\dfrac{1}{2}\)

27 tháng 7 2021

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=8.2=16\Rightarrow AH=4\)cm 

Áp dụng định lí Pytago tam giác ABH vuông tại H : 

\(AB^2=BH^2+AH^2=4+16=20\Rightarrow AB=2\sqrt{5}\)cm 

-> BC = BH + CH = 8 + 2 = 10 cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=100-20=80\Rightarrow AC=4\sqrt{5}\)cm 

* sinB = AC/BC = \(\frac{4\sqrt{5}}{10}=\frac{2\sqrt{5}}{5}\)

cosB = AB/BC = \(\frac{2\sqrt{5}}{10}=\frac{\sqrt{5}}{5}\)

tanB = AC/AB = \(\frac{4\sqrt{5}}{2\sqrt{5}}=2\)

cotaB = AB/AC \(\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=21\\AC^2=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{21}\left(cm\right)\\AC=2\sqrt{7}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2\sqrt{7}}{7}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{\sqrt{21}}{7}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2\sqrt{7}}{\sqrt{21}}=\dfrac{2\sqrt{3}}{3}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{\sqrt{21}}{2\sqrt{7}}=\dfrac{\sqrt{3}}{2}\)

28 tháng 7 2017

áp dụng hệ thức lượng trong tam giác vuông để tính các cạnh

10 tháng 1 2018

tam giác ABC có: góc A = 90* đường cao AH . Áp dụng hệ thức lượng : h^=b'c' ta có

AH^2 = BH. CH =3,75 =>AH=1,93CM

THEO htl (hệ thức lượng) b^2= ab' => ab^2= bc.1,5=6 => ab=căn 6

theo định lí pytago: ac= bc^2- ab^2= 2cm

ta có sin b = ac/c =1/2=.> góc b =30*

=>góc c = 60*

a: AH=căn 13^2-5^2=12cm

CH=12^2/5=28,8cm

BC=28,8+5=33,8cm

AC=căn 28,8*33,8=31,2cm

b: AH=căn 3*4=2căn 3(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=2căn 7(cm)

c: CH=4^2/3=16/3cm

AB=căn 4^2+3^2=5cm

AC=căn 16/3*25/3=20/3(cm)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

NV
26 tháng 7 2021

\(\dfrac{BH}{HC}=\dfrac{1}{4}\Rightarrow CH=4BH\)

Áp dụng hệ thức lượng: 

\(AH^2=BH.CH\)

\(\Leftrightarrow14^2=BH.4BH\)

\(\Rightarrow BH=7\)

\(\Rightarrow CH=4BH=28\)

Pitago tam giác ABH:

\(AB=\sqrt{BH^2+AH^2}=7\sqrt{5}\)

\(sinB=\dfrac{AH}{AB}=\dfrac{2\sqrt{5}}{5}\)

\(cosB=\dfrac{BH}{AB}=\dfrac{\sqrt{5}}{5}\)

\(tanB=\dfrac{AH}{BH}=2\)

\(cotB=\dfrac{1}{tanB}=\dfrac{1}{2}\)

NV
26 tháng 7 2021

undefined

15 tháng 8 2016

Ta có : BC = BH + CH = 64 + 81 = 145 (cm)

=> \(AB^2=HB.BC=64.145\Rightarrow AB=\sqrt{64.145}=8\sqrt{145}\left(cm\right)\)

\(AC=\sqrt{HC.BC}=\sqrt{81.145}=9\sqrt{145}\) (cm)

\(AH=\sqrt{BH.CH}=\sqrt{64.81}=72\left(cm\right)\)

Ta có \(sinB=\frac{AH}{AB}=\frac{72}{8\sqrt{145}}\Rightarrow\widehat{B}\approx48^o21'59.26''\)

\(sinC=\frac{AH}{AC}=\frac{72}{9\sqrt{145}}\Rightarrow\widehat{C}\approx41^o38'0.74''\)