Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet (O) có
ΔAHB nội tiếp
AB là đường kính
Do đo: ΔAHB vuông tại H
=>AH vuông góc với BC
AB^2=BC*BH
b: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOD
Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
a: góc ADB=1/2*180=90 độ
=>AD vuông góc BC
góc AEC=góc ADC=90 độ
=>AEDC nội tiếp
b: ΔOAF cân tại O
mà OC là đường cao
nên OC là phân giác
Xét ΔOAC và ΔOFC có
OA=OF
góc AOC=góc FOC
OC chung
=>ΔOAC=ΔOFC
=>góc OFC=90 độ
=>CF là tiếp tuyến của (O)
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)