Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Gọi AH là hình chiếu của AB trên cạnh huyền BC.}\)
\(\text{Áp dụng hệ thức lượng vào ∆ABC vuông tại A, ta có: }\)\(AC^2=CH.BC\)
\(\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{14^2}{16}=12,25\left(cm\right)\)
\(\text{Áp dụng định lý Pytago vào ∆HAC vuông tại H:}\) \(AH^2=AC^2-HC^2\)
\(\Leftrightarrow AH=\sqrt{14^2-12,25^2}=\sqrt{\frac{735}{16}}=\frac{7\sqrt{15}}{4}\left(cm\right)\)
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(AH^2=BH.CH=2.3=6\Rightarrow AH=6\)(cm) (Vì AH > 0)
Áp dụng định lí Pytago vào tam giác vuông ABH , được : \(AB^2=AH^2+BH^2=2^2+6=10\Rightarrow AB=\sqrt{10}\)(cm)
Vậy a = 10
Độ dài BH=HC+HB=2+3=5
theo hệ thức lượng trong tam giác vuông ta có BA^2=BH.BC=2.5=10
=>AB= căn 10
Cho tam giác ABC vuông tại A, có AC = 14cm; BC = 16cm. Độ dài hình chiếu của cạnh AC trên cạnh huyền là 12,25cm. (Nhập kết quả dưới dạng số thập phân)
\(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=\dfrac{144}{15}=9,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{81}{15}=5,4\left(cm\right)\\AH=\sqrt{9,6\cdot5,4}=7,2\left(cm\right)\end{matrix}\right.\)
Xét ΔACB vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7.2\left(cm\right)\\BH=9.6\left(cm\right)\\CH=5.4\left(cm\right)\end{matrix}\right.\)
Chú ý đề bài không tưởng nhầm là AH.AB =6cm
Đè bài viết thế thì chết ( AB =6 cm)
Bạn chửi người ta ngu chẳng ai muốn giúp bạn đâu !!