K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

mk mới học lớp 7 à

15 tháng 8 2017

A B C E F D

a)Vì ED//BF;BD//EF

\(\Rightarrow\)FEDB là hình bình hành

\(\Rightarrow\)FB=DE

Mà AE=FB\(\Rightarrow\)AE=DE

\(\Rightarrow\)\(\Delta AED\)là tam giác cân

b)Vì ED//AB\(\Rightarrow\widehat{EDA}=\widehat{BAD}\left(1\right)\)

\(\Delta AED\) là tam giác cân

\(\Rightarrow\widehat{EAD}=\widehat{EDA}\left(2\right)\)

Từ (1) và (2) suy ra AD la phan giac cua goc A

\(\Rightarrow\)

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao