Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Theo t/c đường phân giác, ta được: \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)
Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)
Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)
Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.
a: Xét ΔADB vuông tại D và ΔCAB vuông tại A có
góc B chung
=>ΔADB đồng dạng với ΔCAB
b: Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AC*AE
c: DF/FA=DB/AB
AE/EC=BA/BC
mà DB/AB=BA/BC
nên DF/FA=AE/EC
`a,15x-8x=9`
`<=>7x=9`
`<=>x=9/7`
`b,(x+3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x+3=0\\x-5=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-3\end{array} \right.$
Vậy `S={-3,5}`
Bài 2:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a.Xét \(\Delta ADB\)và \(\Delta CAB\)có:
\(\widehat{ADB}=\widehat{CAB}=90^o\)
\(\widehat{ABC}\)chung
\(\Rightarrow\Delta ADB~\Delta CAB\left(g.g\right)\)
b.Kí hiệu: \(\widehat{ABE}=\widehat{B_1};\widehat{EBC}=\widehat{B_2}\)
Ta có:\(\widehat{B}=2\widehat{C}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C}\)
Vì \(\Delta ADB~\Delta CAB\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AB}\)
\(\Rightarrow AB^2=AE.AC\)
c.Ta có:\(\Delta ABB~\Delta CAB\left(g.g\right)\)(cm câu a)
\(\Rightarrow\frac{BA}{BC}=\frac{BD}{AB}\)
Theo t/c đường p/g ta có: \(\frac{BA}{BC}=\frac{EA}{EC}\)và \(\frac{BD}{BA}=\frac{FD}{FA}\)
\(\Rightarrow\frac{FD}{FA}=\frac{EA}{EC}\left(đpcm\right)\)
d.Ta có:\(AB=2BD\left(gt\right)\)
\(\Rightarrow\frac{BD}{AB}=\frac{1}{2}\)
Mà \(\frac{BD}{AB}=\frac{FD}{FA}\)(câu c)
\(\Rightarrow\frac{BD}{AB}=\frac{FD}{FA}=\frac{1}{2}\)
\(\Rightarrow FA=2FD\)
Mà \(S_{ABC}=\frac{1}{2}BC.AD\)
và \(S_{BFC}=\frac{1}{2}BC.FD\)
\(\Rightarrow S_{ABC}=3S_{BFC}\left(đpcm\right)\)
a, Xét ΔABC có góc BAC vuông
=> \(BC^2=AB^2+AC^2\)
=> \(BC^2=25\)
\(\Rightarrow BC=5\) (cm)
Xét ΔABC và ΔDAC, có
\(\widehat{BAC}=\widehat{ADC}\)
\(\widehat{C}\) chung
=> ΔABC∼ΔDAC(g.g)
=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)
\(\Rightarrow AD=2,4cm\)
b, Vì ΔABC∼ΔDAC (cmt)
=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
Xét ΔADB và ΔADC, có:
+ \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)
+ \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
=> ΔADB∼ΔADC (c.g.c)
=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)
\(\Rightarrow AD.AD=BD.DC\)
=> \(AD^2\)= BD.DC(đpcm)