K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D H K

a)Ta có:\(HD\perp AH;AK\perp AH\Rightarrow HD//AK\)

\(AK\perp KD\Rightarrow HD\perp KD\)

Suy ra tứ giác AHDK là hình chữ nhật suy ra HK=AD(đpcm)

b)Ta có vì AHDK là hình vuông nên AH=HD=DK=AK

Suy ra tam giác AHD vuông cân tại H

\(\Rightarrow\widehat{HAD}=\widehat{HDA}=45^0\)

\(\Rightarrow\widehat{DAK}=90^0-45^0=45^0\)

\(\Rightarrow\widehat{HAD}=\widehat{DAK}\)hay AD là tia phân giác của góc A

Vậy AHDK là hình vuông khi và chỉ khi AD là tia phân giác của góc A

c)Ta có:Để HK nhỏ nhất thì AD nhỏ nhất

Suy ra AD vuông góc với BC

Vậy HK nhỏ nhất khi và chỉ khi D là hình chiếu của A trên BC

31 tháng 1 2022

undefined

31 tháng 1 2022

a) -Xét tứ giác AHMK có:

\(\widehat{AHM}=\widehat{HAK}=\widehat{AKM}=90^0\) nên AHMK là hình chữ nhật.

=>\(AM=HK\) (t/c hình chữ nhật).

b) Gỉa sử \(AM\perp HK\).

- Xét hình chữ nhật AHMK có:

\(AM\perp HK\) (gt)

=>AHMK là hình vuông.

=>AM là tia phân giác của \(\widehat{BAC}\) (t/c hình vuông).

- Vậy điểm M là giao điểm của đường phân giác \(\widehat{BAC}\) với cạnh BC thì 

\(AM\perp HK\).

c) - Kẻ \(AM'\perp BC\) tại M'

=>\(AM\ge AM'\) (quan hệ giữa đường vuông góc và đường xiên).

- minAM=AM' ⇔\(AM\perp BC\) tại M.

Mà \(AM=HK\) =>- minHK=AM' ⇔\(AM\perp BC\) tại M.

- Vậy điểm M là chân đường vuông góc kẻ từ A đến BC thì K có độ dài nhỏ nhất.

15 tháng 10 2018

Em tham khảo tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

20 tháng 11 2018

a) Xét tứ giác DMEA có 3 góc vuông nên DMEA là hình chữ nhật.

Theo tính chất hình chữ nhật thì AM = DE.

b) Do DMEA là hình chữ nhật nên DE giao AM tại trung điểm mỗi đường. Do đó, I cũng là trung điểm AM.

Gọi K, H lần lượt là trung điểm của AB và AC.

Xét tam giác BAM có K, I lần lượt là trung điểm của AB và AM nên KI là đường trung bình.

Vậy IK// BC. Tương tự IH//BC.

Lại có KE//BC nên I thuộc KH.

Do KH cố định nên ta có: Khi M di chuyển trên đoạn BC thì I di chuyển trên đoạn KH.

c) Ta đã có DE = AM nên DE ngắn nhất khi và chỉ khi AM có độ dài ngắn nhất.

Lại có AM là đường xiên nên luôn luôn lớn hơn hoặc bằng đường cao AH.

Vậy thì AM có độ dài ngắn nhất khi AM trung với AH tức là M trùng H.

=> DE có độ dài ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC.

a: Xét tứ giác ADME có 

\(\widehat{EAD}=\widehat{AEM}=\widehat{ADM}=90^0\)

Do đó: ADME là hình chữ nhật

19 tháng 1 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của BC

Suy ra: AH ⊥ BC (tính chất tam giác cân)

Do đó, AM  ≥  AH ( quan hệ đường vuông góc và đường xiên )(dấu " = " xảy ra khi M trùng với H)

Tứ giác ADME là hình chữ nhật .

⇒ AM = DE (tính chất hình chữ nhật)

Suy ra: DE ≥ AH

 

Vậy DE có độ dài nhỏ nhất là AH khi và chỉ khi điểm M là trung điểm của BC.

27 tháng 10 2018

Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác ADME có: Giải bài 71 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ADME là hình chữ nhật

O là trung điiểm của đường chéo DE nên O cũng là trung điểm của đường chéo AM.

Vậy A, O, M thẳng hàng.

b) Kẻ AH ⊥ BC; OK ⊥ BC.

Ta có OA = OM, OK // AH (cùng vuông góc BC)

⇒ MK = KH

⇒ OK là đường trung bình của ΔMAH

⇒ OK = AH/2.

⇒ điểm O cách BC một khoảng cố định bằng AH/2

⇒ O nằm trên đường thẳng song song với BC.

Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB.

Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.

c) Vì AH là đường cao hạ từ A đến BC nên AM ≥ AH (trong tam giác vuông thì cạnh huyền là cạnh lớn nhất).

Vậy AM nhỏ nhất khi M trùng H.

3 tháng 6 2017

Giải bài 84 trang 109 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

5 tháng 7 2018

A B C H D I K O M N

a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.

Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật

O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK

Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD

=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK

=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).

b) Lấy M và N lần lượt là trung điểm của AB và AC.

Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM  là đường trung bình \(\Delta\)BAD

=> OM // BD hay OM // BC. Tương tự: ON // BC

=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC

Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.

c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK

Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH

=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.

15 tháng 10 2018

Em tham khảo bài toán tương tự tại link dưới đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath