K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

29 tháng 5 2018

A B O C D M N H K E

a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)

=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).

b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA

Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.

Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.

Tương tự ta chứng minh được: DM là phân giác ^ADC

Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD

Hay AE là phân giác ^CAD => ^CAE = ^DAE.

Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE

=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)

=> OE vuông góc CD (đpcm).

c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)

Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK

=> ^MCK = 1/2(^ADC + ^ACD) (2)

Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA

=> M nằm trên trung trực của AK

Lập luận tương tự: NA=NK => N nằm trên trung trực của AK

=>  MN là đường trung trực của AK . Lại có H thuộc MN

=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.

Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)

\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD

=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).

d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)

=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600

Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600 

Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.