Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
a: Xét tứ giác AEIF có
\(\widehat{AEI}=\widehat{AFI}=\widehat{FAE}=90^0\)
Do đó: AEIF là hình chữ nhật
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
a) IM // AC, AB \(\perp AC\)
\(\Rightarrow\)IM \(\perp AB\) \(\Rightarrow\)\(\widehat{AMI}=90^0\)
IN // AB, AB \(\perp AC\)
\(\Rightarrow\)IN \(\perp AC\) \(\Rightarrow\)\(\widehat{ANI}=90^0\)
Tứ giác AMIN có: \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)
nên AMIN là hình chữ nhật
b) Hình chữ nhật AMIN là hình vuông
\(\Leftrightarrow\)AI là phân giác \(\widehat{BAC}\)
mà AI đồng thời la trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)\(\Delta ABC\)vuông cân tại A
a: Xét tứ giác AMIN có
\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật