K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

26 tháng 12 2016

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

26 tháng 12 2016

dung roi

10 tháng 5 2017

A B C H D E

a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)

Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2

=> AC2=64 (cm) => AC2=8=> AC=8 (cm).

b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD

=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)

c) Nối E với D.

Xét \(\Delta\)AHB và \(\Delta\)EHD:

HB=HD

^AHB=^EHD=900  => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)

HA=HE

=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED

Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)

Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC 

=> AD \(⊥\)EC (đpcm)

10 tháng 5 2017

A B C

a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

102 = 62 + AC2

=> AC2 = 100 - 36 = 64

=> AC =8

20 tháng 12 2020

a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)

b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có

HB=HK(gt)

HA=HD(gt)

Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)

\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)

mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong

nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)

c) Ta có: AB//DK(cmt)

AB⊥AC(ΔABC vuông tại A)

Do đó: DK⊥AC

Xét ΔDAK có 

KH là đường cao ứng với cạnh AD(KH⊥AD)

AC là đường cao ứng với cạnh DK(AC⊥DK)

KH\(\cap\)AC={C}

Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)

⇒DC⊥AK(đpcm)

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

22 tháng 3 2021

undefined

5 tháng 2 2022

phạm duy ơi câu c là 2 cạnh góc vuông đúng ko