Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AM ứng với cạnh huyền BC nên AM = \(\frac{1}{2}\) x BC = \(\frac{4}{2}\) = 2 cm
AH = tan\(\widehat{ACH}\)x HM = tan 150 x 2 = \(4-2\sqrt{3}\)cm
Sin \(\widehat{AMH}\)= \(\frac{AH}{AM}\)= \(\frac{4-2\sqrt{3}}{2}\) = \(2-\sqrt{3}\) cm
Định lí Pitago : AM2 = AH2 + HM2
HC = tan \(\widehat{ACH}\)x AH
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
Tam Giác ABC có A = 90o
AM là trung tuyến
=> tam giác AMC cân tại M
=> AMH = 2.C = 30o
AM = 1/2 . BC = 2 (cm)
=> AH = Sin30 . AM = 1 (cm)
=> HM = Cos30 . AM = \(\sqrt{3}\) (cm)
=> HC = HM + MC = \(\sqrt{3}\) + 2 (cm)
b)
Tính được
AC = \(\sqrt{HC.BC}\)
\(\Rightarrow AC=\sqrt{\left(\sqrt{3}+2\right).4}=2\sqrt{2+\sqrt{3}}\)
\(\Rightarrow C\text{os}15^o=\dfrac{HC}{AC}=\dfrac{2+\sqrt{3}}{2\sqrt{2+\sqrt{3}}}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\)
\(\Rightarrow C\text{os}15^o=\dfrac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{4}=\dfrac{\sqrt{2}.\left(\sqrt{3}+1\right)}{4}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)(đpcm)
sao AMH = 2C v ạ