Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có cos B=AB/BC
nên AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{6}=1.5\left(cm\right)\)
HC=6-1,5=4,5cm
a,i, Tìm được AB=3cm và AC = 6 3 cm
ii, Ta có: A B B D = A C B C = cos A B C ^ = cos 60 0 = cos A C D ^ = A C C D
b, Ta có: 1 A H 2 = 1 A C 2 + 1 A D 2
a: Xét ΔABC vuông tại A có cos B=AB/BC
=>AB/BC=1/2
=>AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=1.5\left(cm\right)\)
HC=6-1,5=4,5(cm)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
a: Xét ΔBAC vuông tại A có
\(AC=6\cdot\sin60^0\)
hay \(AC=3\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=9\)
hay AB=3cm
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9}{6}=1.5\left(cm\right)\\CH=\dfrac{27}{6}=4.5\left(cm\right)\end{matrix}\right.\)