K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Đặt BH=x, CH=y

Theo đề, ta có: xy=4,82=23,04 và x+y=10

=>x và y là hai nghiệm của pt là:

\(x^2-10x+23.04=0\)

=>x=3,6 hoặc x=6,4

=>(BH;CH)=(3,6;6,4) hoặc(BH;CH)=(6,4;3,6)

TH1: BH=3,6cm; CH=6,4cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

AM=BC/2=5cm

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

\(AC=\sqrt{6.4\cdot10}=8\left(cm\right)\)

TH2: 

CH=3,6cm; BH=6,4cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

AM=BC/2=5cm

\(AC=\sqrt{3.6\cdot10}=6\left(cm\right)\)

\(AB=\sqrt{6.4\cdot10}=8\left(cm\right)\)

b: Đặt BH=a; CH=b

Theo đề, ta có: ab=144 và a+b=25

=>a,b là các nghiệm của pt là:

\(x^2-25x+144=0\)

=>x=9 hoặc x=16

TH1: BH=9cm; CH=16cm

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

AM=BC/2=25/2=12,5(cm)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

TH2:CH=9cm; BH=16cm

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

AM=BC/2=25/2=12,5(cm)

\(AC=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AB=\sqrt{16\cdot25}=20\left(cm\right)\)

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

1) Xét tam giác $BHA$ và $BAC$ có:

$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)

$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$

$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)

$CH=BC-BH=8-4,5=3,5$ (cm)

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)

2. 3. Những phần này bạn làm tương tự như phần 1.

 

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

11 tháng 5 2017

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)