K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=CH*CB

b: \(BC=25+36=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

=>A\(C=6\sqrt{61}\left(cm\right)\)

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm

30 tháng 6 2019

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

3:

a: AE/AD=9/6=3/2

AD/AC=6/12=1/2

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng vơi ΔABC

c: IB/IC=AB/AC=AD/AE

=>IB*AE=IC*AD

14 tháng 3 2023

cảm ơn bạn

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA

=>CH*CB=CA^2=BC^2-AB^2

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

AH=12*16/20=192/20=9,6cm