Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác PEDQ có
M là trung điểm chung của PD và EQ
PD vuông góc với EQ
Do đó: PEDQ là hình thoi
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
c: Xét tứ giác AMCN có
E là trung điểm của AC
E là trung điểm của MN
Do đó: AMCN là hình bình hành
mà MA=MC
nên AMCN là hình thoi
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
b: Xét ΔCAB có
M là trung điểm của AB
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác AMCN có
E là trung điểm của đường chéo AC
E là trung điểm của đường chéo MN
Do đó: AMCN là hình bình hành
mà MN⊥AC
nên AMCN là hình thoi