Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: BC=10cm
AH=4,8cm
c: Xét ΔABH vuông tại H có HM là đườg cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b)\) Xét \(\Delta ABC\) vuông tại A:
\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)( Hình ảnh chỉ mang tính chất minh họa )
a) Tính BC và AH :
Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :
AB2+AC2=BC2
82+152=BC2
⇒BC=17(cm)
Ta có : SABC=12⋅AB⋅AC=12⋅AH⋅BC
⇔AH=AB⋅ACBC=8⋅1517=12017(cm)
b) Có Aˆ=900(giả thiết), Mˆ=900(hình chiếu), Nˆ=900(hình chiếu)
=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).
Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.
⇒MN=AH=12017(cm)
c) Vì N là hình chiếu của H trên AC ⇒N∈AC
mà MH//AN(hcn) => MH//AC
Theo hệ quả của định lý Ta-let => AMAB=ANAC
Suy ra : AM⋅AC=AN⋅AB(đpcm)
Bài làm
a) Vì AH vuông góc với BC
=> Tam giác AHC vuông ở H.
=> \(\widehat{HAC}+\widehat{C}=90^0\) (1)
Vì HN vuông góc với AC
=> Tam giác HNC vuông ở N
=> \(\widehat{NHC}+\widehat{C}=90^0\) (2)
Từ (1) và (2) => \(\widehat{HAC}=\widehat{NHC}\)
Xét tam giác AHN và tam giác ACH có:
\(\widehat{ANH}=\widehat{HNC}\left(=90^0\right)\)
\(\widehat{HAC}=\widehat{NHC}\)
=> Tam giác AHN ~ tam giác ACH ( g - g )
b) Xét tam giác AHB vuông ở H,
Theo định lí Thales có:
\(AB^2=AH^2+HB^2\)
Hay \(15^2=12^2+HB^2\)
\(\Rightarrow225=144+HB^2\)
\(\Rightarrow HB^2=81\)
\(\Rightarrow HB=9\left(cm\right)\)
Xét tam giác AHC vuông ở H có:
\(AC^2=AH^2+HC^2\)
hay \(13^2=12^2+HC^2\)
\(\Rightarrow169=144+HC^2\)
\(\Rightarrow HC^2=25\left(cm\right)\)
\(\Rightarrow HC=5\left(cm\right)\)
Ta có: HB + HC = BC
hay 9 + 5 = BC
=> BC = 14 ( cm )
1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=HC\cdot BC\)
3: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
=>AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN∼ΔACB
TK
1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB