Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 a, xét tam giác ABD và tam giác HBD có:
BD cạnh chung
\(\widehat{ABD}\)=\(\widehat{HBD}\)(gt)
\(\Rightarrow\)tam giác ABD = tam giác HBD( CH-GN)
\(\Rightarrow\)AB=HB
b,trên tia đối của tia DH lấy O sao cho HD=DO
xét tam giác ADO và tam giác CDH có:
DH=DO( theo trên)
\(\widehat{ADO}\)=\(\widehat{CDH}\)( Vì đối đỉnh)
\(\Rightarrow\)tam giác ADO=tam giác CDH( CH-GN)\(\Rightarrow\)AD=CD
a)Xét tam giác ABD và tam giác ACB có:
AB=AC(GT)
góc DAC= góc BAD (GT)
AD là cạnh chung
Do đó tam giác ABD = tam giác ACB (c.g.c)
vì AB = AC => Tam giác ABC cân tại A
mà AD là tia p/g của góc A ( gt)
=> Ad đồng thời là đường trung trực của BC
nha em
Xét tgiac vuông AKD và tam giác vuông AED, có
Góc AKD= góc AED =99°
Góc KAD=góc EAD ( tia phân giác)
AD là cạnh chung
=> Tam giác AKD= tam giác AED ( cạnh huyền góc nhọn kề)
=> DK= DE ( 2 canh tương ứng)
=> Tam giác DKE cân tại D ( định nghĩa)