K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Sai đề bài rồi bn.

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

Suy ra: AD=MD

b: Ta có: BA=BM

nên B nằm trên đường trung trực của AM(1)

Ta có: DA=DM

nên D nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BD\(\perp\)AM

25 tháng 9 2021

Cảm ơn nha v bn bt lm câu c ko v :)?

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

27 tháng 2 2020

Gọi D là giao điểm của AB và IE

\(\Delta\)BDC có hai đường cao DI và CA cắt nhau tại I nên I là trực tâm của ​\(\Delta\)BDC

=> BI vuông góc CD (1)

Xét \(\Delta\)IAD và \(\Delta\)ICE có:

     ^IAD = ^ICE ( = 900)

     IA = IC

     ^AID = ^CIE (đối đỉnh)

Do đó ​\(\Delta\)IAD = \(\Delta\)ICE (g.c.g)

=> ID = IE (hai cạnh tương ứng)

Xét \(\Delta\)AIE và \(\Delta\)CID có:

     AI = CI (gt)

    ^AIE = ^CID (đối đỉnh)

    DI = EI (cmt)

Do đó \(\Delta\)AIE = \(\Delta\)CID (c.g.c)

=> ^IAE = ^ICD (hai góc tương ứng)

Mà hai góc này ở vị trí slt nên AE //CD (2)

​Từ (1) và (2) suy ra BI vuông góc AE (đpcm)

3 tháng 7 2018

A B C I E F

Gọi giao điểm của 2 tia EC và BI là F, nối FA.

Xét \(\Delta\)BAI và \(\Delta\)FCI có: AI=CI; ^BAI = ^FCI; ^AIB = ^CIF => \(\Delta\)BAI=\(\Delta\)FCI (g.c.g)

=> AB=CF (2 cạnh tương ứng).

Ta có: AB vuông AC; CE vuông AC => AB // CE hay AB // CF

Xét tứ giác ABCF: AB // CF; AB=CF => Tứ giác ABCF là hình bình hành

=> AF // BC. Mà EI vuông BC nên  EI vuông AF.

Xét \(\Delta\)AEF: AC vuông EF; EI vuông AF; điểm I thuộc AC => I là trực tâm \(\Delta\)AEF

=> FI vuông AE. Lại có: Tứ giác ABCF là hình bình hành;  I là trung điểm đường chéo AC

=> 3 điểm F;I;B thẳng hàng. Vậy khi FI vuông AE thì BI cũng vuông AE (đpcm).