Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ΔABC vuông ở A
⇒Góc A= 90 độ
Áp dụng định lý Pitago vào ΔABC:
BC²=AB²+AC²
BC²=6²+8²
BC²=100
⇒BC=10 cm
b AB/HB=BC/BA
=> AB2=HB×BC
⇒HB=AB²/BC
⇒HB=6²/10=3,6(cm)
Tương tự: AC²=HC×BC
⇒HC=AC²/BC
⇒HC=8²/10=6,4(cm)
Vậy BH=3,6 cm và HC=6,4 cm
a: Sửa đề: Tính BC
\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔABC vuông tại A
mà AH là đường cao
nên AB^2=BH*BC
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
a, Theo pytago tam giác ABC vuông tại A
\(BC=\sqrt{36+64}=10cm\)
b, Xét tam giác ABC và tam giác AHB
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác BAC ~ tam giác BHA ( g.g )
c, => AB / BH = BC / AB => AB^2 = BH.BC
=> BH = AB^2/BC = 36/10 = 18/5 cm
=> CH = BC - BH = 32/5 cm
d, Ta có AD là đường pg
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DB=\dfrac{5}{7}.6=\dfrac{30}{7}cm\)
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC\(\sim\)ΔHBA
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot CB\)
a: CB=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA^2=BH*BC
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA/BD=BH/BI
=>BA/BH=BD/BI=BC/BA
=>ΔBDC đồng dạng với ΔBIA
a)Có tg ABC vuông tại a
áp dụng đl pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)
Có BD là đg phân giác tg ABC
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)
lai co: AD+DC=AC=8
=>AD=8-DC
thay vao 1
\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)
\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)
b) xét tg ABC và tg HBA có:
+góc BAH = AHB(=90 độ)
+góc B chung
=> tg ABC đồng dạng tg HBA (gg) (đpcm)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)
c) có: + góc C =\(90^o-\widehat{B}\) (goc A = 90 do)
+ \(\widehat{BAH}=90^o-\widehat{B}\) (goc AHB =90do)
=> goc BAH = goc C
xet tg ABI va tg CBD co
+goc BAH =goc C
+ goc ABI = goc DBC (BD la phan giac)
=> tg ABI va tg CBD dong dang (g.g) (dpcm)