Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>S AHB/S CHA=(AB/CA)^2=9/16
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA∼ΔHAC
c: Ta có: ΔHBA∼ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
Cho Tam giác ABC vuông tại A(AB<AC) có đường cao ah.a chứng minh Tam giác BAH đồng dạng với Tam giác BCA.b vẽ BD là đường phân giác của Tam giác ABC cắt AH tại k. Chứng minh BA.BK=BD.BH.c qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE=EC.
Xét ΔAFH và ΔAHC có:
góc HAC chung
AFC=AHC=90 độ (gt)
=>ΔAFH∼ΔAHC(gg)
=>AF/AH=AH/AC
=>AF.AC=AH^2(1)
d,Từ ΔAEH∼ΔAHB
=>AE/AH=AH/AB
=>AE.AB=AH^2(2)
từ 1 và 2=>AE.AB=AF.AC
=>AE/AC=AF/AB
mà góc A chung
=>ΔAEF∼ΔACB(c.g.c)
e,Ta có AE.AB=AH^2
=>AE.6=4.8^2
=>AE=4,8^2/6=3,84
AF.AC=AH^2=>AF.8=4,8^2=>AF=2,8
=>Saef=2,8.3,84.1/2=5,376
Sbcfe=Sabc-Saef=(6.8:2)-5,376=24-3,76=20.24
a,Áp dụng Pytago ta có
BC^2=AB^2+AC^2
BC^2=6^2+8^2=36+64=100
BC=10
Mặt khác :
Sabc=1/2AB.AC=1/2BC.AH
=>AB.AC=BC.AH
=>6.8=10.AH
AH=48/10=4,8
b,Xét △AEH và △AHB có:
góc HAB chung
AEH=AHB=90 độ (gt)
=>ΔAEH ∼ΔAHB
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Hình bạn tự vẽ ạ
a, Xét \(\Delta ABC\) và \(\Delta HAC\) có :
\(\widehat{A}=\widehat{AHC}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)
Ta có : ΔABC vuông A, định lý Pi-ta-go ta đươc :
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Mà \(\Delta ABC\sim\Delta HAC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
hay \(\dfrac{3}{AH}=\dfrac{5}{4}\)
\(\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b, \(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)