Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)
hay AH=12(cm)
Vậy: AH=12cm
a ) .
Xét 2 t/g vuông : ABC và HBA có:
góc B chung
do đó:
t/g ABC đồng dạng t/g HBA ( g - g )
b ) .
Áp dụng đl pytao vào t/g vuông ABC có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
vi t/g ABC đồng dạng t/g HBA
=> \(\dfrac{AC}{HA}=\dfrac{BC}{AB}\Leftrightarrow\dfrac{20}{HA}=\dfrac{25}{15}\Rightarrow HA=20:\dfrac{25}{15}=12\left(cm\right)\)
a) Áp dụng định lí Pytago vào \(\Delta\)ABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Vậy: BC=25cm
Đáp án:
a) △ABC∽△HAC△ABC∽△HAC
b) EC.AC=DC.BCEC.AC=DC.BC
c) △BEC∽△ADC△BEC∽△ADC, △ABE△ABE vuông cân tại A
Giải thích các bước giải:
a)
Xét △ABC△ABC và △HAC△HAC:
ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)
ˆCC^: chung
→△ABC∽△HAC→△ABC∽△HAC (g.g)
b)
Xét △DEC△DEC và △ABC△ABC:
ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)
ˆCC^: chung
→△DEC∽△ABC→△DEC∽△ABC (g.g)
→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC
c)
Xét △BEC△BEC và △ADC△ADC:
DCEC=ACBCDCEC=ACBC (cmt)
ˆCC^: chung
→△BEC∽△ADC→△BEC∽△ADC (c.g.c)
Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)
→AH//ED→AH//ED
△AHC△AHC có AH//EDAH//ED (cmt)
→AEAC=HDHC→AEAC=HDHC (định lý Talet)
Mà HD=HAHD=HA (gt)
→AEAC=HAHC→AEAC=HAHC
Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)
→ABAC=HAHC→ABAC=HAHC
→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB
→△ABE→△ABE cân tại A
Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)
→△ABE→△ABE vuông cân tại A
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
DO đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
a: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng vói ΔABC
b: Xét ΔCED vuông tại E và ΔCHA vuông tại H có
góc C chung
=>ΔCED đồng dạng vói ΔCHA
=>CE/CH=CD/CA
=>CE*CA=CD*CH