Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=MD
mà DM<DC
nên AD<DC
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D
ΔBKC cân tại B
mà BN là phângíac
nên BN vuông góc KC
a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:
\(DB\) chung
\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)
b) Do ∆DAB = ∆DMB (cmt)
⇒ DA = DM (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AM (1)
Do ∆DAB = ∆DMB (cmt)
⇒ BA = BM (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AM (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AM
Hay BD ⊥ AM
c) Xét hai tam giác vuông:
∆DMC và ∆DAK có:
DM = DA (cmt)
∠MDC = ∠ADK (đối đỉnh)
∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)
⇒ MC = AK (hai cạnh tương ứng)
Lại có: BM = BA (cmt)
⇒ BM + MC = BA + AK
⇒ BC = BK
∆BCK cân tại B
Mà BD là tia phân giác của ∠B
⇒ BD cũng là đường cao của ∆BCK
⇒ BD ⊥ KC
Mà BD ⊥ AM (cmt)
⇒ AM // KC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
Bạn tự vẽ hình nha =)
a) Xét tam giác DAB và tam giác DMB có:
Góc DAB= Góc DMB (=90 độ)
Chung cạnh BD
=> Góc DAB= Góc DMB
b) Vì
Góc DAB= Góc DMB=> BA=BM,DA=DM
=> B,D∈ trung trực AM
=> DB là trung trực AM
c.Ta có: DM⊥BC=>KD⊥BC
CA⊥AB=>CD⊥BK
=>D là trực tâm tam giác BCK
→BD⊥CK
→BN⊥KC
Xét ΔBMK,ΔBAC ta có:
Chung B
=>BM=BA
ˆBMK=ˆBAC(=90độ)
=>ΔBMK=ΔBAC(c.g.c)
=>BK=BC
=>ΔKBC cân tại B
a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B
a: Xét ΔMAB và ΔMCD có
MA=MC
MB=MD
AB=CD
=>ΔMAB=ΔMCD
b: Xét ΔMAC có MA=MC nên ΔMAC cân tại M
ΔMAB=ΔMCD
=>góc MAB=góc MCD
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
a) Xét hai tam giác vuông: ∆DAB và ∆DMB có:
DB chung
∠ABD = ∠MBD (do BD là tia phân giác của ∠B)
⇒ ∆DAB = ∆DMB (cạnh huyền - góc nhọn)
b) Do ∆DAB = ∆DMB (cmt)
⇒ DA = DM (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AM (1)
Do ∆DAB = ∆DMB (cmt)
⇒ BA = BM (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AM (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AM
c) ∆BAM có BA = BM (cmt)
⇒ ∆BAM cân tại B
∆DAM có DA = DM (cmt)
⇒ ∆DAM cân tại D
d) Do D ∈ AC
⇒ AD < AC