Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC\(\sim\)ΔMDC(g-g)
b) Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔBMI\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BM}{BA}=\dfrac{BI}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BM\cdot BC=BA\cdot BI\)(đpcm)
a: Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{C}\) chung
Do đó: ΔABC∼ΔMDC
b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔBMI∼ΔBAC
Suy ra:BM/BA=BI/BC
hay \(BM\cdot BC=BI\cdot BA\)
-Câu b bạn đã làm được thì mình sẽ không c/m lại.
c. -Xét △BCI có:
CA là đường cao (CA⊥AB tại A).
IM là đường cao (IM⊥BC tại M).
CA và IM cắt nhau tại D.
\(\Rightarrow\) D là trực tâm của △ABC.
\(\Rightarrow\)BD là đường cao của △ABC.
Mà BD cắt CI tại K (gt).
\(\Rightarrow\)BD⊥CI tại K nên \(\widehat{CKB}=90^0\)
-Xét △CKB và △CMI có:
\(\widehat{ICM}\) là góc chung.
\(\widehat{CKB}=\widehat{CMI}=90^0\)
\(\Rightarrow\)△CKB ∼ △CMI (g-g).
\(\Rightarrow\dfrac{CK}{CM}=\dfrac{CB}{CI}\)(2 tỉ lệ tương ứng).
\(\Rightarrow CK.CI=CB.CM\)
\(\Rightarrow BI.BA+CK.CI=BM.BC+CB.CM=BC.\left(BM+CM\right)=BC.BC=BC^2\)
-Do độ dài BC không đổi nên \(BI.BA+CI.CK\) không đổi khi M chuyển động trên BC.
a)xét tg ABC và tg MDC có: BAC=DMC=90, ^C chung
=>tg ABC đ.dạng vs tg MDC(g.g)
b)xét tg ABC và tg MBI có: CAB=BMI=90, ^B chung
=>tg ABC đ.dạng vs tg MBI(g.g) =>AB/MB=BC/BI=>AB.BI=BM.BC(đpcm)
tu ve hinh nhe luc dau m nham
SAO VE DC HINH