K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Vì E,F là trung điểm AB,AC nên EF là đtb tg ABC

Do đó \(EF=\dfrac{1}{2}BC=5\left(cm\right)\)

17 tháng 11 2021

Áp dụng PI-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Vì E,F là trung điểm của AB,AC \(\Rightarrow\) EF là đường trung bình trong tam giác ABC \(\Rightarrow EF=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

 

10 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

17 tháng 12 2021

undefined

1 tháng 12 2016

chịu@@@@@@@@@@@@@@@@@@

1 tháng 12 2016

cũng biết làm nhưng ko 

23 tháng 6 2021

Hình thì bạn tự vẽ đi nha. Bn không làm đc nhưng cũng phải vẽ hình đc.

Trong ΔABC: DA = DB (GT); EA = EC (GT)

=> DE là đường trung bình

=> DE = 1/2 BC = 1/2 14 = 7 (cm)

Trong ΔABC: DA = DB (GT); FB = FC (GT)

=> DF là đường trung bình

=> DF = 1/2 AC = 1/2 10 = 5 (cm)

Trong ΔABC: EA = EC (GT); FC = FB (GT)

=> EF là đường trung bình

=> EF = 1/2 AB = 1/2 6 = 3 (cm)

Vậy DE = 7cm; DF = 5cm; EF = 3cm.

14 tháng 10 2021

Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC

\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)

13 tháng 12 2021

Áp dụng Pytago: \(BC=\sqrt{AB^2+AC^2}=10(cm)\)

Vì E là trung điểm BC nên AE là trung tuyến ứng cạnh huyền BC của \(\Delta ABC\)

Do đó \(AE=\dfrac{1}{2}BC=5(cm)\)

16 tháng 10 2020

                           A B C D E F

Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC

\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)

Tương tự ta có:

DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)

EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)

Vậy \(DE=7cm\)\(DF=5cm\)\(EF=3cm\)