K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔBAC vuông tại A có

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{5}{13}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{12}{5}\)

\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

a: Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=12(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\cos\widehat{ACB}=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\tan\widehat{ACB}=\dfrac{5}{12}\)

\(\cot\widehat{ACB}=\dfrac{12}{5}\)

a) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC ta có :

BC\(^2\)= AB\(^2\)+AC\(^2\)

=> AC\(^2\) = 25 - 9

=> AC = 4 (cm)

SinB = AC/BC = \(\frac{4}{5}\)

CosB = AB/BC = \(\frac{3}{5}\)

TanB = AC/AB =\(\frac{4}{3}\)

CotB =AB/AC = \(\frac{3}{4}\)

b) Áp dụng định lý Py-ta-go vào \(\Delta\)ABC có :

BC= AB+AC2

=> BC2= 169 +144

=> BC =\(\sqrt{313}\)

SinB = AC/BC =\(\frac{12}{\sqrt{313}}\)

CosB = AB/BC = \(\frac{13}{\sqrt{313}}\)

TanB = AC/AB =\(\frac{12}{13}\)

 CotB = AB/AC = \(\frac{13}{12}\)

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu