K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

B A C E M H D

a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung

b,\(\Delta ABC\sim\Delta HBA\) theo a

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)

                                     \(=4.\left(4+9\right)\)

\(\Rightarrow AB=2\sqrt{13}\) (cm)

Áp dụng định lí py-ta-go trong \(\Delta ABH\):

\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)

Vì \(AH=DE=6cm\)

c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung

\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)

Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)

-Chúc bạn học tốt-

7 tháng 6 2021

Kí hiệu: \(\sim\) này là đồng dạng nha

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: XétΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot CH\)

c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)

nên AH=8cm

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE=8(cm)

27 tháng 1 2022

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^BHA = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

b, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAC ) 

Vậy tam giác ABH~ tam giác CAH (g.g )

=> AH/CH=BH/AH => AH^2 = CH.BH 

c, Ta có : AH = 2 . 4 = 8 cm 

Xét tứ giác ADHE có : 

^A = ^ADH = ^AEH = 900 

Vậy tứ giác ADHE là hcn 

=> AH = DE = 8 cm 

d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)

Xét tam giác AHC và tam giác ABC 

^AHC = ^BAC = 900

^HAC = ^B ( cùng phụ ^BAM ) 

Vậy tam giác AHC ~ tam giác BAC ( g.g)

=> AC / BC = HC/AC => AC^2 = HC ( HB + HC ) 

=> AC = 4 . 5 = 20 cm 

Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm