Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
a: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=MB=MC
=>góc MBA=góc MAB
b: góc AEF=90 độ-góc EAM=90 độ-góc B
=>gócAEF=góc ACB
c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có
góc AEF=góc ACB
=>ΔAFE đồng dạng với ΔABC
=>AF/AB=AE/AC
=>AF*AC=AB*AE
a) Ta có: ΔABH vuông tại H(AH⊥BC)
nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)
Ta có: tia AB nằm giữa hai tia AD,AM(gt)
nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)
hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔABM có AM=BM(cmt)
nên ΔABM cân tại M(Định nghĩa tam giác cân)
⇒\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)
Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)
a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔMBA có MA=MB(cmt)
nên ΔMBA cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)
\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)
Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)
nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)
Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)
hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)
ko biet vi chua hoc den lop 8
tôi chịu tôi chưa học lớp 8 nên tôi ko biết