Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{7}{24}\Rightarrow AB=\dfrac{14\cdot24}{7}=48\left(cm\right)\)
Áp dụng pytago:
\(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
\(\tan\widehat{C}=\dfrac{1}{\cot\widehat{C}}=\dfrac{24}{7}\\ \sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{48}{50}=\dfrac{24}{25}\\ \cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{14}{50}=\dfrac{7}{25}\)
a: \(\sin B=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{13}\)
\(\tan B=\dfrac{AC}{AB}=\dfrac{12}{5}\)
\(\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\)
\(\cos B=\sin C=0,8\\ \Leftrightarrow\cos C=\sqrt{1-\sin^2C}=\sqrt{1-0,8^2}=0,6\)
Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8
Từ công thức sin2C + cos2C = 1 ta suy ra: