K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{6^2+12^2}=6\sqrt{5}\left(cm\right)\)

=>\(IM=\dfrac{AB}{2}=3cm\)

b: Xét tứ giác ABCD có

ID//AB

IA//DB

góc IAB=90 độ

IA=AB

Do đó: ABCD là hình vuông

Xét ΔABC có 

E là trung điểm của AC

M là trung điểm của BC

Do đó: EM là đường trung bình

=>EM//AB

hay EM⊥AC

Xét tứ giác AEDB có

\(\widehat{DEA}=\widehat{DBA}=\widehat{EAB}=90^0\)

Do đó: AEDB là hình chữ nhật

mà AB=AE
nên AEDB là hình vuông

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

Vì $M,E$ lần lượt là trung điểm của $BC, AC$ nên $ME$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$

$\Rightarrow ME=\frac{AB}{2}=\frac{4}{2}=2$ (cm)

Mặt khác, $ME$ là đường trung bình nên $ME\parallel AB$ hay $ED\parallel AB$

$Bx\parallel AC\Leftrightarrow BD\parallel AE$

Tứ giác $ABDE$ có 2 cặp cạnh đối $BD,AE$ và $AB, DE$ song song nhau nên $ABDE$ là hình bình hành. Mà $\widehat{A}=90^0$ (gt) nên $ABDE$ là hình chữ nhật. 

Hình chữ nhật $ABDE$ có cạnh kề $AB=AE(=4)$ nên $ABDE$ là hình vuông. (đpcm)

 

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined