Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+12^2}=6\sqrt{5}\left(cm\right)\)
=>\(IM=\dfrac{AB}{2}=3cm\)
b: Xét tứ giác ABCD có
ID//AB
IA//DB
góc IAB=90 độ
IA=AB
Do đó: ABCD là hình vuông
Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
Do đó: EM là đường trung bình
=>EM//AB
hay EM⊥AC
Xét tứ giác AEDB có
\(\widehat{DEA}=\widehat{DBA}=\widehat{EAB}=90^0\)
Do đó: AEDB là hình chữ nhật
mà AB=AE
nên AEDB là hình vuông
Lời giải:
Vì $M,E$ lần lượt là trung điểm của $BC, AC$ nên $ME$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$\Rightarrow ME=\frac{AB}{2}=\frac{4}{2}=2$ (cm)
Mặt khác, $ME$ là đường trung bình nên $ME\parallel AB$ hay $ED\parallel AB$
$Bx\parallel AC\Leftrightarrow BD\parallel AE$
Tứ giác $ABDE$ có 2 cặp cạnh đối $BD,AE$ và $AB, DE$ song song nhau nên $ABDE$ là hình bình hành. Mà $\widehat{A}=90^0$ (gt) nên $ABDE$ là hình chữ nhật.
Hình chữ nhật $ABDE$ có cạnh kề $AB=AE(=4)$ nên $ABDE$ là hình vuông. (đpcm)