K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

undefined

16 tháng 4 2018

  • Chu Kiều Phương

Bấm vào câu hỏi tương tự 

3 tháng 4 2017

a) Tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>BC2=32+42=25

=>BC=5

Vậy BC=5 cm

b) Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K có

MC=MB( vì M là trung điểm của BC)

CMK=BHM( 2 góc đối đỉnh)

=> tam giác BHM= tam giác CKM ( cạnh huyền- góc nhọn)

c) Xét tam giác HMI vuông tại I có HM>HI ( cạnh huyền lớn nhất) (1)

Có tam giác BHM= tam giác CKM ( câu b)

=>HM=MK (2)

Từ (1) và (2) =>MK>HI

d) Có \(\Delta BHM=\Delta CKM\)( theo câu b)

=> BH=KC

Xét tam giác  BKC có KC+BK>BC ( bất đẳng thức tam giác) (3)

Thay BH=KC vào (3) ta có BH+BK>BC

23 tháng 4 2016

a) theo định lí py-ta-go ta có:

ab^2 +ac^2=bc^2

9+16=bc^2 

25=bc^2

=>bc=5(cm)

b)ta có bh song song với ck(cùng vuông góc với am)

=> góc HBM=góc MCK(2 góc so le trong )

xét tam giác BHM và tam giác CKM, ta có:

+góc BMH=góc CMK(2 góc đối đỉnh)

+BM=CM( gt)

+góc HBM =góc MCK(c/m trên)

=> 2 tam giác = nhau (g.c.g)

c)theo 2 tam giác =nhau => HM=MK

mà HI>HM( HI là cạnh huyền tam giác IHM)

=>HI>MK

d)theo 2 tam giác = nhau => BH=CK

=>BH+BK=CK+BK

MÀ BK+CK>BC(bất đẳng thức trong tam giác 

=>BH+BK>BC

A B C H K I M

Bài làm

a) Xét tam giác ABC vuông ở A có:

Theo định lí Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 32 + 42 

=> BC2 = 9 + 16

=> BC2 = 25

=> BC = 5 ( cm )

b) Mik k hiểu rõ phần câu hỏi lắm, chắc là CMR: Tam giác BHM = tam giác CKM ak? 

Vì BH vuông góc với AM

CK vuông góc với AM

=> BH // CK 

=> \(\widehat{BCK}=\widehat{HBC}\) ( hai góc so le trong )

Xét tam giác BHM và tam giác CKM có: 

\(\widehat{BHM}=\widehat{CKM}\left(=90^0\right)\)

Góc nhọn: \(\widehat{BCK}=\widehat{HBC}\)( cmt )

Cạnh huyền BM = MC ( Do M là trung điểm BC )

=> Tam giác BHM = tam giác CKM ( cạnh huyền - góc nhọn )

c) Xét tam giác BHM vuông ở H có:

BM là cạnh huyền của tam giác BHM

=> BM > HM                                         (1)

Xét tam giác HIM vuông ở I có:

HM là cạnh huyền của tam giác HIM

HM > HI                                                (2)

Từ (1) và (2) => BM > HI

Mà BM < BC ( Do M là trung điểm BC )

=>HI < BC 

Xét tam giác MKC vuông ở K có:

MC là cạnh huyền của tam giác MKC

=> MC > MK 

Mà MC < BC ( Do M là trung điểm BC )

=> MK < BC 

Bài làm

~ Mik lm nốt câu d nha ~

d) Xét tam giác BHM và tam giác CKM ( cmt )

=> BH = CK

Xét tam giác BKC có: 

Theo bất đẳng thức của tam giác có:

BK + KC > BC

Mà BH = KC

=> BK + BH > BC 

Vậy BK + BH > BC 

21 tháng 4 2022

a, Áp dụng định lý Pytago :

ta có : \(BC^2=AC^2+AB^2\)

           \(BC^2=3^2+4^2\)

           \(BC^2=9+16=25=5^2\)

       =>\(BC=5^{ }\)

b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn

Có : Trong tam giác ABC có BC=5, AC=4, AB=3

=> góc A > góc B > góc C 

Vậy góc B > góc C

c, Xét △BIC và △AIC có

góc \(C_1=C_2\)

BAC = KHC = 90 độ

IC cạnh chung

=> △HIC = △AIC

Xét △HIB và △KIA có

IH = IA (cmt)

\(I_1=I_2\)( đối đỉnh)

Góc A = góc H = 90 độ

=> △HIB = △AIK

Vậy cạnh AK = BH

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.a)     Tính BC?b)    Chứng minh tam giác ABI=tam giác HBIc)     Chứng minh BI là đường trung trực của đoạn thẳng AHd)    Chứng minh IA<ICe)     Chứng minh I là trực tâm tam giác ABCBài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.

a)     Tính BC?

b)    Chứng minh tam giác ABI=tam giác HBI

c)     Chứng minh BI là đường trung trực của đoạn thẳng AH

d)    Chứng minh IA<IC

e)     Chứng minh I là trực tâm tam giác ABC

Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.

a)     Cho AB=5cm, AC=7cm, tính BC?

b)    Chứng minh tam giác ABE=tam giác DBE?

c)     Gọi F là giao điểm của DE và BA, chứng minh EF=EC

d)    Chứng minh BE là trung trực của đoạn thẳng AD

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

2
23 tháng 4 2016

đăng gì mà lắm thế nhõ ko ai trả lời thì sao

25 tháng 4 2016

GIÚP TỚ