K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

a,Xét tam giác ABI và tam giác KCI có

góc AIB = góc KIC (đối đỉnh)

góc BAI = góc IKC ( = 90 độ )

=> ABI ~ KCI

b,Từ hai tam giác trên động dạng với nhau,ta suy ra : góc ABI = góc ICK  (1)

Mặ khác,BI là phân giác góc ABC nên ABI = góc IBC   (2)

Từ (1) và (2) => Góc IBC = góc ICK

c,AB = 3,AB=4 => BC=5(định lý Pytago)

AB:BC=AI:IC(tính chất đường phân giác)

=>AB:(AB+BC) = AI:(AI+IC)=AI:AC

=> 3:8 =AI: 4 => AI = 1,5

IC=AC-AI   => IC = 4 - 1,5= 2,5.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

10 tháng 3 2022

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.