K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

a) ΔABD và ΔEBD có:
BA = BE (gt)
B1ˆ=B2ˆ (BD là tia phân giác góc B)
BD là cạnh chung
⇒ΔABD=ΔEBD (c.g.c)
⇒⇒ BADˆ=BEDˆ(hai góc tương ứng)
mà BAD^ =90 độ
BEDˆ= 90 độ
 DE ⊥⊥ BE

b) ΔABI và ΔEBIcó:
BA = BE (gt)
B1ˆ=B2ˆ (gt)
BI là cạnh chung
⇒ΔABI=ΔEBI (c.g.c)
 IA = IE (hai cạnh tương ứng) (1)
Ta có: I1ˆ+I2ˆ=1800 (hai góc kề bù)
mà I1ˆ=I2ˆ (ΔABI=ΔEBI)
 I1ˆ=I2ˆ=90 độ  (2)
Từ (1) và (2) ⇒⇒ DE vuông góc với BE.

c) ΔAHE vuông tại H có góc AEH nhọn
⇒góc  AEC là góc tù
⇒⇒ AHEˆ<AECˆ
⇒⇒ AE < AC (quan hệ giữa cạnh và góc đối diện)
mà EH là hình chiếu của AE trên BC.
HC là hình chiếu của AC trên BC.
⇒⇒ EH < HC (quan hệ đường xiên và hình chiếu

1 tháng 6 2020

sao câu c loằng ngoằng thế

21 tháng 9 2021

\(a,\left\{{}\begin{matrix}DH=HC\\BM=MC\end{matrix}\right.\Rightarrow HM\) là đtb tam giác BDC

\(\Rightarrow HM//BD\)

\(b,HM//BD\left(cm.trên\right)\\ \Rightarrow BD\perp HE\left(1\right)\left(HM\perp HE\right)\)

Lại có H là trực tâm nên CH là đường cao tam giác ABC

\(\Rightarrow CH\perp AB\Rightarrow HD\perp BE\left(2\right)\)

Mà \(DE\cap BE=E\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow E\) là trực tâm tam giác HBD

\(c,\) H là trực tâm nên BH là đường cao 

\(\Rightarrow BH\perp AC\left(4\right)\)

Mà E là trực tâm nên DE là đường cao

\(\Rightarrow DE\perp BH\left(5\right)\\ \left(4\right)\left(5\right)\Rightarrow DE//AC\)

\(d,\left\{{}\begin{matrix}DH=HC\\\widehat{DHE}=\widehat{CHF}\left(đối.đỉnh\right)\\\widehat{DEH}=\widehat{HFC}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\Delta DHE=\Delta CHF\left(g.c.g\right)\\ \Rightarrow EH=HF\)

16 tháng 12 2016

a) xét ▲ABD VÀ▲ EBD có

BD là cạnh chung

góc ABD= góc DBE

AB= BE

nên Δ ABD=Δ EBD (c.g.c)

16 tháng 12 2016

b) vì Δ ABD=Δ EBD (cmt)

→ góc BED= góc BAC (2 góc tương ứng)

c) ta có:

AH VUÔNG VỚI BC

→ góc AHE = 90o (1)

góc bed = 90o (cmt) (2)

từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.a)     Chứng minh tam giác ABK cân tại Bb)    Chứng minh DK vuông góc BCc)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HACd)    Gọi I là giao điểm của AH và BD. Chứng minh IK//ACBài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).a)     So sánh góc ABC và góc ACB. Tính góc ABH.b)    Vẽ AD là phân...
Đọc tiếp

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

 

1
17 tháng 3 2019

Ngắn nhở -.-

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

18 tháng 4 2016

Vào xem câu hỏi tương tự thử s

31 tháng 10 2016

cho mình hỏi câu a bài 3 bạn làm sao z

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0