K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

5 tháng 4 2019

Xét hai tam giác vuông ABC và CDB, ta có:

∠ (BAC) =  ∠ (DCB) = 90 0  (1)

Mà:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (2)

Từ (1) và (2) suy ra: △ ABC đồng dạng  △ CDB (cạnh huyền và cạnh góc vuông tỉ lệ)

Suy ra:  ∠ (ACB) =  ∠ (CBD)

⇒ BD//AC ( hai góc ở vị trí so le trong bằng nhau )

áp dụng định lý pitago vào tam giác vuông ABC:

\(AB^2\)+\(AC^2_{ }=BC^2\)

=>\(AB^2=BC^2-AC^2\)

<=>\(AB^2=6^2-4^2=20=>AB=\sqrt[]{20}\)

ÁP dụng định lý pitago vào tam giác vuông BCD

\(BC^2+DC^2=BD^2=>DC^2=BD^2-BC^2=9^2-6^2=45=>DC=\sqrt[]{45}\)

TA CÓ

\(\dfrac{AB}{CD}=\dfrac{\sqrt[]{20}}{\sqrt[]{45}}=\dfrac{2}{3}\) (1)

\(\dfrac{DC}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\) (2)

TỪ 1 và 2 => \(\Delta ABC\sim\Delta BCD\)

=>\(\widehat{DBC}=\widehat{ACB}\) mà 2 góc này ở vị trí so le trong => BD//AC

7 tháng 2 2017

làm hộ mk với

\(AB=\sqrt{6^2-4^2}=2\sqrt{5}\left(cm\right)\)

\(CD=\sqrt{9^2-6^2}=3\sqrt{5}\left(cm\right)\)

Vì AB/CD=AC/CB=BC/BD

nên ΔABC\(\sim\)ΔCDB

=>\(\widehat{ACB}=\widehat{CBD}\)

hay AC//BD

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)