K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)

Do đó: ΔABI\(\sim\)ΔCBD

d: Xét ΔBHA có BI là đường phân giác ứng với cạnh AH

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔBAC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)

Ta có: \(AB^2=BH\cdot BC\)

nên \(\dfrac{BH}{BA}=\dfrac{AB}{BC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng vơi ΔBHA

b: BH=15^2/25=9(cm)

c: EH/EB=AH/AB=AC/BC

=>EH*BC=EB*AC

a: Xét ΔHIK có IN là phân giác

nên HN/NK=HI/IK=HK/IK(1)

Xét ΔHIK có KM là phân giác

nên HM/MI=HK/KI(2)

Từ (1) và (2) suy ra HN/NK=HM/MI

=>MN//IK

=>ΔHMN\(\sim\)ΔHIK

b: Ta có: HN/HI=NK/IK

=>HN/10=NK/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)

Do đó: HN=50/9(cm)

Xét ΔHIK có MN//IK

nên MN/IK=HN/HK

\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm