Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật.
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔCAB có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CEDM có
DM//CE
DM=CE
Do đó: CEDM là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔBAC có
E la trung điểm của AC
D là trung điểm của AB
Do đó: ED là đường trung bình
=>ED//BC
hay ED//MH
=>EMHD là hình thang
mà EH=MD
nên EMHD là hình thang cân
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
Bài 1:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hayDMCE là hình bình hành
1: Xét tứ giác ADME co
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
Xét ΔABC có
DM//AC
nên DM/AC=BD/BA=BM/BC
=>D là trung điểm của BA
Xét ΔABC có ME//AB
nên ME/AB=CM/CB=CE/CA=1/2
=>E là trung điểm của AC
=>EM//BD và EM=BD
=>BMED là hình bình hành
Xét tứ giác DMCE có
DM//CE
DM=CE
Do đó: DMCE là hình bình hành
2: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
AD=AB/2=3cm
AE=AC/2=4cm
\(S_{ADME}=3\cdot4=12\left(cm^2\right)\)
3: ΔHAC vuông tại H
mà HE là trung tuyến
nên HE=AC/2=MD
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét tứ giác DHME có
DE//MH
MD=HE
Do đo: DHME là hình thang cân
hình bạn tự vẽ nhe
a, Xét tứ giác ADME có 3 góc vuông:\(MDA=DAE=MEA=90^o\)
do đó : ADME là hình chữ nhật.
b, Xét tam giác ABC có đường t.b ME (1)
lại có M là trung điểm BC và ME//DA
=> D là trung điểm của AB (2)
từ (1) và (2) suy ra:
\(ME=\dfrac{1}{2}AB\)
hay ME=DB và ME//DB
vậy tứ giác ADME là hình bình hành
c,
Xét tam giác EHD và tam giác EAD có
DE cạnh chung
AD=DH(gt)
góc HED = góc AED (gt)
do đó 2 tam giác EHD và EAD = nhau
=> HE = AE ( 2 cạnh tương ứng )(3)
Xét hình chữ nhật ADME có :
DM= AE ( 2 cạnh đối = nhau )(4)
từ (3) và (4) suy ra :
HE=DM
Xét tứ giác DEMH có :
HE =DM (cmt)
do đó : DEMH là hình thang cân ( 2 đường chéo = nhau ).
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).