K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.

 

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

30 tháng 10 2021

a) Vì AI^2=AD.AE nên để chứng minh AI^2=DE.AK ta chứng minh AD.AE=DE.AK bằng cách chứng minh hai tam giác ADE và KAE đồng dạng.

b) Trong tam giác vuông AIK có sinAIK = AK/AI = AI/DE ( theo đẳng thức ở câu a)

Mà AI là đường trung tuyến ứng với cạnh huyền nên AI = DE/2

Do đó sinAIK = 1/2 suy ra góc AIK bằng 30 độ.

24 tháng 9 2021

Xét tứ giác ADHE có:

\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)

=> Tư giác ADHE là hình chữ nhật

\(\Rightarrow DE=AH\left(1\right)\)

Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH

\(AH^2=HB.HC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE(2)

Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

30 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)