Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A => BC2 = AB2 + AC2 ( Theo định lý pitago )
=> BC2 = 32 + 42 = 9 + 16 = 25 = 52
=> BC = 5 (cm)
Tam giác IBC có IB = IC => Góc IBM = Góc ICM (định lý)
Xét tam giác BIM và tam giác CIM có :
IB = IC (gt)
Góc IBM = Góc ICM (cm trên)
Góc BMI = Góc IMC = 900 (gt)
=> tam giác BIM = tam giác CIM (CH - GN)
=> BM = MC (góc tương ứng)\
Mà BM + MC = BC = 5(cm)
=> BM + BM = 5 <=> 2BM = 5 => BM = 2,5 (cm)
Vậy BM = 2,5 (cm)
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
a. Áp dụng định lí Py-ta-go vào tam giác vuông ABC có ;
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=3^2+4^2\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5cm\)
Vậy BC = 5cm
b.Xét hai \(\Delta\)vuông AMD và \(\Delta\)vuông AMI có
\(\widehat{AMD}=\widehat{AMI}=90^O\)
cạnh AM chung
MD = MI [ gt ]
Do đó ; \(\Delta AMD=\Delta AMI\)[ cạnh góc vuông - cạnh góc vuông ]
c.Vì MI = MD mà BM\(\perp\)ID nên
B thuộc đường trung trực của đoạn thẳng ID
\(\Rightarrow\)BI = BD
Vậy B cách đều 2 cạnh góc IAD
#)Góp ý :
Bạn tham khảo nhé ^^
Xét tam giác ABC vuông tại A :
BC2 = AB2 + AC2 (định lý Py-ta-go)
=> BC2 = 32 + 42 = 9 + 16 = 25
=> BC = 5 cm
Ta có : IB = IC (I cách đều 3 cạnh của tam giác ABC)
=> Tam giác IBC cân tại I
=> Góc IBM = góc ICM
Xét tam giác BIM và tam giác CIM có :
Góc BMI = góc CMI (= 90 độ)
IB = IC (cmt)
Góc IBM = góc ICM (cmt)
==> Tam giác BIM = tam giác CIM (cạnh huyền - góc nhọn)
=> BM = CM (2 cạnh tương ứng)
mà BM + CM = BC = 5 cm
Nguồn : Câu hỏi của Nguyen Ngoc Anh Linh - Toán lớp 7 | Học trực tuyến
Link : https://h.vn/hoi-dap/question/567650.html